Meta-analysis of Protein Structural Alignment
نویسندگان
چکیده
منابع مشابه
Approximate protein structural alignment in polynomial time.
Alignment of protein structures is a fundamental task in computational molecular biology. Good structural alignments can help detect distant evolutionary relationships that are hard or impossible to discern from protein sequences alone. Here, we study the structural alignment problem as a family of optimization problems and develop an approximate polynomial-time algorithm to solve them. For a c...
متن کاملIterative Non-Sequential protein Structural Alignment
Structural similarity between proteins gives us insights into their evolutionary relationships when there is low sequence similarity. In this paper, we present a novel approach called SNAP for non-sequential pair-wise structural alignment. Starting from an initial alignment, our approach iterates over a two-step process consisting of a superposition step and an alignment step, until convergence...
متن کاملA structural alignment kernel for protein structures
MOTIVATION This work aims to develop computational methods to annotate protein structures in an automated fashion. We employ a support vector machine (SVM) classifier to map from a given class of structures to their corresponding structural (SCOP) or functional (Gene Ontology) annotation. In particular, we build upon recent work describing various kernels for protein structures, where a kernel ...
متن کاملMAGNOLIA: multiple alignment of protein–coding and structural RNA sequences
MAGNOLIA is a new software for multiple alignment of nucleic acid sequences, which are recognized to be hard to align. The idea is that the multiple alignment process should be improved by taking into account the putative function of the sequences. In this perspective, MAGNOLIA is especially designed for sequences that are intended to be either protein-coding or structural RNAs. It extracts inf...
متن کاملFlexible structural protein alignment by a sequence of local transformations
MOTIVATION Throughout evolution, homologous proteins have common regions that stay semi-rigid relative to each other and other parts that vary in a more noticeable way. In order to compare the increasing number of structures in the PDB, flexible geometrical alignments are needed, that are reliable and easy to use. RESULTS We present a protein structure alignment method whose main feature is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Proteomics & Bioinformatics
سال: 2013
ISSN: 0974-276X
DOI: 10.4172/jpb.1000277